$$\begin{array}{l} \text{infinitesimal } g. trf.: A_i \mapsto A_i - D_i \varepsilon, \\ with \quad D_i \varepsilon = \partial_i \varepsilon + [A_i, \varepsilon] \\ \hline \underline{Definition} \; (curvature): \\ F_A = dA + A \land A \in \Omega^2(M, og) \\ \hline \underline{Definition} \; (Chern-Simons \; functional): \\ \hline For \; A \in \mathcal{A}_M \; we \; put \\ CS(A) = \frac{1}{8\pi^2} \int_M Tr(A \land dA \; + \; \frac{2}{3} \land A \land A) \\ M \end{array}$$

$$\frac{P_{roposition 1}}{A \text{ critical point of the Chern-Simons}}$$

$$\frac{P_{roof}}{f_{unctional is a flat connection.}}$$

$$\frac{P_{roof}}{P_{roof}}$$

$$\frac{P_{roof}}{Consider a one-parameter family of connections}$$

$$A_{t} = A + ta. Then$$

$$CS(A + ta) = CS(A) + \frac{t}{4\pi^{2}} \int_{M} Tr(F_{A} \wedge a) + O(t^{2})$$

$$(exercise)$$

$$\Rightarrow CS \text{ is critical at } A \Leftrightarrow F_{A} = 0.$$

Set now
$$\partial M = \Sigma$$
 (Riemann surface)
Denote by Q a principal G bundle over Σ .
For $G = SU(2) \rightarrow Q \equiv \Sigma \times SU(2)$, since $SU(2)$
Simply connected
Denote by d_{Σ} the space of connections on Q.
We have $d_{\Xi} \cong \Omega'(\Sigma, q)$
On d_{Σ} there is non-degenerate anti-symmetric
bilinear form ω defined by
 $\omega(\alpha, \beta) = -\frac{1}{8\pi^2} \int Tr(\alpha \wedge \beta), \alpha, \beta \in \Omega'(\Sigma, q)$
with $d\omega = 0$.
 $\rightarrow d_{\Sigma}$ has structure of infinite dimensional
symplectic manifold.
Dy Prop. $3\S \mid \exists$ line bundle Z over d_{Σ}
and a connection ∇ an Z s.t. $\omega = G(\nabla)$
(first Chern class) \rightarrow Quantization of d_{Σ}
In the following we shall conduct Z.
Denote by G_{Σ} the gauge group of Q.
 $\rightarrow G_{\Sigma} = Map(\Sigma, G)$

For
$$a \in A_{\Xi}$$
 and $g \in G_{\Xi}$ let A be an extension
of a on M and $\overline{g}: M \rightarrow G$ an extension of
 g as a smooth map from M to G .
Set
 $c(a, g) = exp(2\pi - f - f(CS(\overline{g}^*A) - CS(A)))$
More explicitly,
 $c(a, g) = exp(2\pi - f - f(CS(\overline{g}^*A) - CS(A)))$
 $\sum_{\Sigma} \frac{1}{8\pi^2} Tr(\overline{g}^*ag Ag^{-1}dg) - \overline{g}^*\sigma)$
 $\xrightarrow{Wess-2minon}$

Summarizing, we have
Proposition 3:
Zet M be a compact oriented 3-manifold
with boundary E. For a connection A of
a principal G bundle P over M and a gauge
transformation ge Map(M,G) we have

$$exp(2\pi F-T CS(q^*A)) = c(a, q|_{\Sigma})exp(2\pi F-T CS(A))$$

where $g|_{\Sigma}$ denotes the restriction of q on Σ .
Zet $a \in \mathcal{A}_{\Sigma}$. Define $L_{Z,A}$ as the set of maps

 $f: \operatorname{Map}(\Sigma, G) \longrightarrow \mathbb{C}$ satisfying $f(e.g) = c(a,g)f(e), g \in Map(\Sigma,G)$ -> LZ, a is I dimensional complex vector space with Hermitian inner product. Prop. 3 $\rightarrow \exp(2\pi I - (S(A))) \in L_{\mathcal{Z}, q}$ For - S (S with reversed orientation) we have $L_{-\Sigma,\alpha} \in \overline{L}_{\Sigma,\alpha}$ Let M= M, UM, with DM, = S and $\partial M_1 = - \sum$ Let A be a connection on M and A, and Az its restrictions on M, and Mz. a= restriction of A on Z. $\longrightarrow \exp(2\pi \sqrt{-1} CS_{M_1}(A_1)) \in L_{\mathcal{Z}, \alpha_1} \exp(2\pi \sqrt{-1} CS_{M_2}(A_2)) \in \overline{L_{\mathcal{Z}, \alpha_1}}$

Using the canonical pairing

$$L_{\Sigma,X} \times L_{-\Sigma,X} \rightarrow C$$
we get

$$\exp(2\pi i \neg CS_{M}(A))$$

$$= \langle exp(2\pi i \neg CS_{M}(A)), exp(2\pi i \neg CS_{M_{2}}(A_{2})) \rangle$$
Denote by 7+, 0 ≤ t ≤ 1 a one-parameter
family of connections of a G-bundle
Q over Σ .
 \rightarrow regard 7 as connection over $\Sigma \times [0,1]$
 $\rightarrow CS_{\Sigma \times [0,1]}$ defines a map

$$exp(2\pi i \neg CS_{\Sigma \times [0,1]}) : L_{7} \rightarrow L_{7}, (*)$$
Yet L_{Σ} be a topologically trivial line bundle
over Δ_{Σ} . For a path $\gamma_{1}, 0 \le t \le 1$, in Δ_{Σ}
 $\stackrel{(*)}{\rightarrow}$ lift to the total space of L_{Σ}
 \rightarrow connection ∇ on L_{Σ} with hor. sections
given by above lift
 \rightarrow can verify: $C_{i}(\nabla) = W$

Xift action of gauge group
$$\mathcal{G}_{Z}$$
 to L_{Z} .
Define $M_{Z} = \mathcal{A}_{Z} //\mathcal{G}_{Z} = \mu^{-1}(0)/\mathcal{G}_{Z}$
(Marsden-Weinstein quotient)
of flat G-connections
an Z
 \rightarrow complex line bundle Z on M_{Z} .
The Chern-Simons partitian function for
a 3-manifold M is formally written as
 $Z_{K}(M) = \int exp(2\pi + \pi K S(A)) DA$ (**)
 $\mathcal{A}_{M}/\mathcal{G}$
Suppose that M is ariented 3-manifold
with boundary Z. Have shown
 $exp(2\pi + \pi K S(A)) \in L_{Z,X}$
 $\mathcal{M}_{M,K} :=$ space of G-connections on M whose
restriction an $Z = \alpha$
Restrict the path integral in (**) to $\mathcal{A}_{M,X}$
Since $exp(\pi - \pi K S(A)) - C(q_{J,X})^{K} exp(2\pi - \pi K S(A))$
 $\rightarrow Z_{K}(M)$ is section of complex line bundle $Z^{\otimes K}$